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Goldstone’s theorem and related topics

J. A. SWIECA

University of Sao Paulo, Brasil

| Symmetries and consetved currents in field theory

The purpose of these lectures will be to discuss some problems related
with the existence of symmetries associated with conserved currents in
guantum field theory. '

Before entering the guantum case let us briefly review some classical
results.

Take a Lagrangean density

g(qji(x)n ag(gbi(x)) (I 1)
which gives us by the principle of minimal action
s[#d*x=0 12)
the Euler-Lagrange equations of motion
¢ o0& G _
- e =il (1.3)
éx* 68, @; 0Py

If the Lagrangean (1.1) is invariant under an » parametric transformation
group

D (x) 2 Vi{hy ... 2P (X) (1.4a)

V= P (I*infinitesimal generators) (1.4b)

we obtain on one hand the invariance of the equations of motion (1.3}
under the transformation (1.4) and on the other hand Noether's theorem
gives us » conserved currents

cF

~

¢

S I'g (1.5)

(in matrix notation}.
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Since the momentum canonically conjugate to @ is

o.F
= — (1.6)
Co®
satisfying the well-known Poisson bracket relation
{Px), 1)}, =00(x =) {1.7)
we have
(A0, @y, = 5D (¥)O(x~¥) (1.8)
or infroducing the conserved *charge”™
0" = [FH(x)d*x (1.9)
{05 B0} = i) (1.10)

Q" is therefore the generator of the infinitesimal canonical transforma-
tiens corresponding to (1.4).

In the traditional formulation of quantum field theory one works for-
mally with a Lagrangean (1.1) which leads to the equations of motion for
the guantized field in close correspondence with the classical treatment.

Also in a very formal fashion one applies Noether’s theorem to ob-
tain conserved currents given essentially by (1.5) which satisfy

[£), 20)] = —Lid,()d(x~y) (L11)
Agaln it is usual to introduce an “operator”
U() = e (1.12)
supposedly implementing unitarily the symmetry
UGS U ™) = V()@ (x) (1.13)

Itis argued then that the physical vacuum has no quantum numbers and
therefore should be left invariant by the symmetry, implying in

040y =0 (1.14)

All those arguments are however at most of heuristic value for several
reasons:

1 The Lagrangean, equations of motion and currents involve products
of field operators at the same peint and therefore are i1l defined quanti-
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ties whose proper meaning should be obtained by limiting procedures
starting from different space-time points [1].

2 The construction of the “charge” from the density (1.9) requires in the
classical case the hypothesis that the fields should vanish at infinity to
ensure convergance of the integral, what is physically very reasonable,
In the guantum case the existence of vacuum fluctuations occurring all
over space (translation invariance) dees not allow us to take the quan-
tum analogue of {1.9) as a well-defined operator even if a meaning has
been given to the density. (This 13 the source of the spontaneous sym-
metry breakdown.)

It order to aveid those difficulties the more ambitious program would
be to show that under certain conditions (for instance existence of a
mass gap) any continuous group of local #-automorphisms of the opera-
tor algebra is unitarily implementable, I think we are far from such a
proof. A slightly less ambitious task but also to my knowledge un-
accomplished would be to study the class of automorphisms which lead
to conserved currents obtaining thus a quantum Noether theorem.

Finally one can by-pass the harder part by assuming the existence of a
conserved current defined as an opsrator valued distribution and con-
centrate cne’s attention to difficulty nb. 2. This will be our purpose in
those lectures. We shall concentrate mainly on internal symmetries of
the kind (1.4) which do not change the space-time coordinate. Many of
our conclusions are however generalizable to a larger class of symmetry
2roups.

We shall work with quantized fields @,(x) satisfying Wightman’s
axioms [2]. Tt would also be possible to base our discussion on the Haag-
Kastler [3] elgebraic framework.

From the &,(x) the basic quantized fields of the theory we go over te
the (quasi-local) Wightman polynomials {2]

P = Zﬂi A e XL L B ()AL dRx, (L19)

with the f, § class functions.

Particularly important will be the local Wightman polynomials assc-

15
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ciated to a finite space-time region 8
) ~
A=Y jj: By, (% %)@ (xg) . B () Xy L d i,
=1 fs,..in

with A, out of D and having support in &.
At its most basic level a symmetry of @ Q.F.T. is a correspondence

A A (1.17)

A

induced by (I.4) that leaves invariant the equations of motion and com-
mutation refations of the theory, i.e., that preserves its algebraic struc-
ture (automorphism of the operator algebra). [4].

From the point of view of observable consequences, that is, to obtain
from the symmetry relations between cross-sections, multiplet-structure,
etc. ... it is necessary to have the correspondence (1.17) unitarily imple-
menied with a U(4, ... 4,) = U(%) such that

UNAU M) =4, (1.18)
U0 =10 (1.19)

We assume the existence of a conserved current #£9(x} with #* a hermi-
tian and local field

6#1"(x) =0 (1.20)
and
dA; _—
. = i[F°( [ fx), A) (1.21)
di |3=0 R>Ro
with

(S0 fefw) = [ F R flxo) fr(x)d*x (1.22)
and fy, f» S class functions with
frxy=1 [|x[<R
=0 |x[>R+e (1.23)

filxg) =0 [x4l>d
[ fulxoydxo=1 (1.24)
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and R, being such that the points
(xg, x)with  |xg|<d
| x> Ry

He outside of the light-cone of the region & to which A is associated.

Fig. 1

Y

71N

AX(ER——

Ro

Eguation (1.21) is a careful way of expressing the content of the equal-
time commutation relation {I.11) which is thus believed to be basically
correct. {Since (1.11) follows by blindly applying equal-time canonical
commutation relations, I think it is worthwhile to check its validity in
perturbation theory [5], specially since there are known examples of
scluble field theories in 2 dimensional space-time where one obtains re-
sults different from the canonical ones [6]}.

Before proceeding any further consistency requires that the r.h.s. of
equation (1.21) be shown independent of f; /z for R>R;.

The independence with fg is a trivial consequence of local commuta-
tivity since

(FOff i, A= 17 f), A1=0 (1.25)
Ri1>Ro R2=Ro
because f{(x) = fix) = 1 for |x| <R, from (1.23) and those are the
only points that contribute to the commutator since

[£0(x), A] =0 for |xo]<d |x|>R, (1.26)
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The independence with f; is shown taking
F (xo) = [ (3,60 = f2(xo0)dxq (1.27)

where without loss of generality we take d, >d;.
From (1.24) we see that f () vanishes cutside an interval of thickness
d, around the origin and since

d

] (e0) = ft o) = fiforo) (£.28)
Xo

one gets using the conservation law (1.20)

-~

/a, .
fo( 4 fR) = IS =P n S =F (V) (129

dx,
with . .
F(FVfz) = [ F(xox)] (xo)Vfr(x)d *x (1.30)
Since V fz(x) =0 for Ix| < R from (1.23) one gets again by local commu-
tativity R
[F(fV/r), Al =0 (1.31)
R=>Ra
and therefore
[FOfi f2), A1 = fa S A] g.e.d. (1.32)
R>Ro R>=Ro

The charge operator will be now defined on the dense set of states ob-
tained by applying local polynomials on the vacuum by

d4;

ids

def
Q410> = [ £*fufr, A][0) = > (1.33)

>Ro A=

In order 12 at this be 2 consistent definition of & hermitian operator it will
he necessary to demonstrate a theorem known as the Goldstone theo-
7

rem [7, 8}-
Il Goldstone's theorem

Th. If thet-€ are no zero mass particles in the theory, then

<0L[é0(ﬁs T, 4110y =0 (IL 1)
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Proof Take the v.ev. of the commutator of the charge density with 4,
that satisfies a generalization of the Killen-Echmann representation [9)
due to Araki, Hepp and Ruelle [10]

{0]LF°(x), 4]

0) = [dp? [ yatx—y, xo. (P)p1 (i, )+
0

a 2
+ J dp? Jf By Mx—y, %0, Ip (it ¥)  (11.2)

&x®
0
where 4(x, x, #°) 15 the Pauli-Jordan function for a scalar field of mass
jcand p,, p, are measures in x having compact support in y as a conse-
gquence of local commutativity.
One can write (i =1, 2)

22, ¥y = PSP +V - 6% y) (I1.3)
with ®,(z%, v) also of compact sapport iny.
To verify (I1.3) observe that
F1 , + oo
G007, ¥) = [{p?, 70 y20) = 8D o, ¥1 v, y)diddy, (11.4)

has compact support and

+ 03 , , 6(6(1)
o2, ¥) =80y | e, 31, v2, y3)dyi +
— %

(IL.5)

1

Repeating the argument above for the coefficient of é(y,) in (11.5) with
respect to the variables 35, y; one arrives at (11.3). Using (I1.2) and (11.3)
we get

OILF o fr) ANOY = [d? [ /({7 (#2)A(x, xo0%) +
R Roe(x) 4]

(11.6)

-~

¢ 2
— A%, Xq, 1)
Cxg

+55(1%)

where to simplify matters we have taken fy(x,) = 8(x, — x,) and the terms
with V® vanish using the fact that A(x?, ;%) is zero for x?<0 and
Jr(xy=1for |x|<R.
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On the other hand from {1.28-32)

d
<0‘[f0():0 » ./fR)ﬁ A” D> =0 (117)

dXy &= Rolxol

With (11.6) and (I1.7) one gets

B, (12} cos (uxg)du® =0

Se—g Sty g

5P sin (px)du® =0 (1L.8)
what implies in
151(#2) =0
po(u?) = 20(u*) (IL.9}
and therefore
(OI[# (xq, fa), A110) =0 unless A5£0 (11.10)

R > Ro(xo)

To conclude our proof it is enough to show that 270 implies discrete
states of zero mass.
In fact using (I1.3, 9) one obtains

[pai?, HyP(y)dy = (iL11)

with ¥(y) any sufficiently smooth function which is 1 1n the compact
region when ®, is different from zero and has compact support. Using

A(x, xq, Uy =0
xD: 0
¢ | .
— A(x, x5, 4 | =3°(x) (1112}
CXp
xa=0

and recalling that the integration over u* comes from intermediate
states of mass g we see with (I1.11, 12, 2) that
01 V()£ 00, X} xE(M ) A — AE(M?) [V(x).0%0, x)d°50) =

M2

= i [a(utdu® = . (1i.13)
¢
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where E(M %) is the projector on states of mass less or equal to M. Since
for 2 #0{I1.13) is different from zero no matter how small M we conclude
the existence of discrete eigenstates of the mass operator with eigenvalue
ZErO, g.e.d.

Remarks

i 1t is clear that the only zero mass particles of interest are the ones
which are coupled to the vacuum by the current. If the curreat trans-
forms like a four-vector under the Lorentz group, and no use has been
made of this fact in our proof, the zero mass states must necessarily have
spin 0. (If indefinite metric is allowed they may correspond te the aphysi-
cal zero norm part of a spin 1 particle).

2 It is illustrative to compare our arguments with the following naive
proof of Goldstone’s theorem.

Consider

L(p, po} = [ (OILFO(x, xo), A]|OpePxTiromjty (I1.14)

Using the continuity equation and dropping boundary terms one con-
cludes as in {I1.7)

lim poL(p, po) =0 (I1.15)
p—0

and hence
L(0, po) = 8(po) (I1.16)

This will imply the existence of a discrete excitation whose energy goes
to zero with the momentum only if one knows that L{(p, p,) can be writ-
ten as g(p, po— E(p)) where g is smooth in its first variable.

This is always the case for relativistic field theories as a consequence of
local commutativity since p; ,(p®, p) is the Fourier transform of a func-
tion with compact support and therefore analytic in p.

3 Local commutativity is used in two ways in our proof.

First to conclude from the continuity equation that

\
lim <0 ‘[ dd_ F%x0, o) AjH 0> =0
R0 Xo |

as in (I1.7), secondly to be able to write the representation (1L.2). As far
as the first result is concerned we could have done with a much weaker
form of commutativity. If one assures now a mass gap hypothesis which
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is stronger than our assumption of no zero mass particles one can put
the naive proof (I11.14-16) into rigorous shape [4] to obtain:

lim (0|1 fu fr), 2)10) = 0 {1.17)

R-»x
where it is sufficient that [xI2[#*(x,, x), 2] 0.
|x|—o

This will be of interest in discussing the problem of symmetries in non-
relativistic systems.

Il Construction of Q and U(%)
We are now prepared to show that if there are no zero mass particles

in the theory (1.33) defines an operator with all the properties of a charge.
Firstly consistency requires that if

Aj0> = B|0> (111.1a)
with A4, B local polynomials
@A10> = Q@ B|0) (111.1b)
Proof From (1.33)
QA10>—- 08|05 =£f;(ﬁfx), A4-B]|0> (IIL.2)

Taking the scalar product of both sides of (TIL2) with C|0) where C'is
an arbitrary local polynomial

(01CTQA4|0)—{0]C* QB|0Y = — (0| C* (4 - B).F (fafR)I0)

R>Ro

= 0|7 fufr). CHA-B)]O) (111.3)

R>FRo

where use has been made of (IT].1), and the fact that C*(4—B) is a
local polynomial.
Using (IL1) and (I1L3)

{0jC* 410y ={0|C* @B|0) (111.4)
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and since {C!0>} is a dense set of vectors QA4|0) = QB|0) (I11.1b}).
q.ed.
(Obs. In a local relativistic theory we could have used a simpler proofl
based on the fact that if 4|0> = B|0) then A = B. Our proof applies
however also to non-relativistic theories.)

Having shown the univocity of the definition (1.33) we show now that
the operator Q is hermitian between vectors of the set {4]03].
Proof.

(0187 2410) ={01 B*L#°(fo ), A1I0) = (11.5)
OU[B*, 7°(fa falAI0) + O fafo), BT A]0)

R>R'o R

Using (11.1), the second term on the r.h.s. of (IIL.5) vanishes and we get
{0| B* QA4|0) ={0|4* 0B|0) g.c.d. (111.6)

The hermitian operator @ defined by (1.33) corresponds to infinitesimal
generator of the symmetry associated to a conserved cursent. To obtain
the operator U(1) corresponding to a finite transformation we take the
exponential of Q. For internal symmetries the states 4|0) are analytic
vectors for O so that U(1) can be directly defined by theconvergent power
series expansion on the dense set {4]0)}

e} n

(”'??) A0 = 4,]0) (IIL7)

I

U()A| 0 = Z

The convergence of this series is easily proved [11] since for internal
symmetries it is reduced to the convergence of a power series of finite
dimensional matrices acting on the space of indices.

The hermiticity of Q (111.6) and the convergence (I11.7) imply in

(OjAT U (WUNBI0) ={0| 47 B|0) (111.8)
what allows by continuity to extend U(%) as a unitary operator
(AU HUDI B =(wl @) =(p UQU R @)  (IL9)
From (I11.7) with 4 = 1 cne has
U0 =105 (I11.10)
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and with A4 replaced by AB
UDNAU Y () =4, (IIL.11)

We obtain thus in a constructive way the unitary operator that imple-
ments the symmetry. In this respect our approach differs slightly from
the one adopted in [4] where the existence of U(%) is shown indirectly via
the Gel’fand-Segal construction.

From (II1.10, 11), one gets using the Haag-Ruelle collision theory [12],
the transformation properties of the asymptotic states, the multiplet
structure and the invariance of the § matrix under the symmetry group.

It is clear that our construction only works due to (II.1). In case

QOILF*(frfa), 4110} #0 (IIL.12)

R>Ro
a unitary implementation of the symmetry is not possible and one has a
spontaneous symmerry breakdown.

IV Charges as integrals of densities

We have seen in the previous section how in the absence of zero mass
states, one can build the “charge” operator Q.

Let us examine now the meaning of eq. (1.9) that is, in what sense
can be the charge described as an integral of the density over the whole
space.

First notice that (I1.1) can be generalized to read

lim (O|L#°(fs fx) 2110y =0 (IV.1)
R—cc
with 2 a quasi-local polynomial since
122105 — Al 0> [|o/g 7 Iv.2)
and
1#°(fa fI 0> <BR® (av.3)

Now if we make the stronger mass gap assumption it is always possible
to obtain for any 4 with {4) =0 a quasi-local polynomial such that
20> =470 (IV.4)
210> =0
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and thus

lim {0] 4,°(fa/»)|0) =0 (IV.5)

R—o0

Using now definition (1.33) and eq. (IV.5) one has, with 4, B arbitrary
local polynomials

(0| B* 04]0) =<ROiR{3* L2°(fufw), 4110) = (IV.6)
leim (0| B*L#°(f. /), A1I0) =R1im (0| B* £°(f, f)410)

Equation (IV.6) means that the formal definition of the charge as in-
tegral of the density should be understood as

(vl Q| ®) =R<w|ér °(fuf D @) (IV.7)

with |y, | @) states obtained by the application of local polynomials
on the vacuum. One can extend the validity of eq. (IV.7) to include states
obtained by applying quasi-local polynomials on the vacuum and even
to states of the form jf(x)A(x)3x| o) with | x%|f(x)—0 [13, 14a]. It is
x|—0

certainly not valid for arbitrary states in the dolrilain of O as already seen
for a free field theory, the physical reason being the appearance of
vacuum fluctuations at the surface of the volume over which #° is inte-
grated which grow with R? and therefore have non-vanishing overlap
with the states | @), | ) unless those have “wave functions” which
tend sufficiently fast to zero for large distances.

Although I can provide no rigorous proof I believe that eq. (awv.n
for quasi-local states is a consequence of (II.1) independent of any addi-
tional spectrum assumptions. This is of interest in theories like for in-
stance quantum-electrodynamics where the charge operator exists and
the gauge group unitarily implemented even though there are zero mass
particles [14a]. Very recently it has been rigorously shown by H. Reeh
that (IV.7) holds in quantum-electrodynamics for local states [14b].

In theories with a mass gap (which if they are physically reasonable
also imply a gap between the one particle and the continuum states),
since one can build a normalized one particle state by applying a quasi-
local polynomial on the vacuum [12], one has from (av.mn

{11Q11) = lim {1.£°(f f)l 1) = F(0) (IV.8)
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where F(0) is the form factor at zero momentum transfer, which is a
proof of the well-known statement that coupling constants attached to
conserved currents are not renormalized [15].

In quantum-electrodynamics due to the presence of zero-mass par-
ticles the canonical current

N
ﬁ=%£@¥i (1V.9)
which acts as the generator of local gauge transformations
[£4x), w(¥)] = —w(y)d(x—y) (IV.10)

satisfies

lim<15ff(fdfx}|1>=Zs#<1IQ11>= 1 av.11)
R—00
violating eq. (IV.8).
On the other hand the source current

=231 gk (IV.12)
O4*=eg"

which satisfies eq. (IV.8) is not the generator of gauge transformations.
Those results which are physically understandable as resulting from
vacuum polarization effects [14a], are a result of the fact that the cano-
nical current contains a longitudinal part which contributes to the com-
mutator but not to the one-particle matrix elements {5].

As a matter of fact, neither of the currents is a finite operator due to
this longitudinal part but one can introduce a finite current which is
both the generator and satisfies (IV.8) by

ﬁ=ﬁ+g%?lwam) (IV.13)

To end this section it is appropriate to remark that it provides a
natural setting for the discussion of Coleman’s theorem [16], which we
state without proof.

Th. Unitary operators giving rise to approximate symmetries associated
with non-conserved currents cannot exist in relativistic field theories.
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V Spontaneous symmetry breakdown in many-body
systems and difficulties in particle physics

In the previous sections, we have dealt with relativistic theories
obeying the postulate of local commutativity. On the other hand since
the classical examples of spontaneous symmetry breakdown (as the
crystal and the ferromagnet for instance) come from non-relativistic
many-body systems it is desirable to extend our results whenever possible
to include those theories.

As mentioned in section II (remark 3, e.g. (I1.17)) Goldstone’s theo-
rem can be generalized from the local framework to theories where the
commutators between quasi-local polynomials in the basic fields (I.15)

decrease faster than 1/|x|? for large spatial separations

lim [3[2(0][2" (x), #*]|0) =0 v.1)
where 21(x) is the translate by x of the polynomial 7
It is clear that in a theory satisfying canonical commutation relations
and with a Hamiltonian
V™V
B 2m

Ex+ [y Ou OVE-y@ymdxd’y—pN (V.2)

the behaviour of the commutators should be closely related to the range
of the potential V.

As for a free field theory the commutators decrease faster than any
inverse power of |%| and in the strong coupling limit (m—o0) one ob-
tains [17]

[W(X: t}: IJU+ (y5 0)] + & t V(X'HY)

|x—y|—=00

one can expect that for potentials of sufficiently short range (V.1) is
satisfied. (This has been verified up to 2nd order perturbation theory
{18},

One could therefore expect that a general proof of unitary imple-
mentation of a symmetry associated to a conserved current could be ob-
tained along the lines and for local relativistic theories for a short range
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potentials and an energy gap between the ground state and the first
excited state. This is however not the case due to the fact that there is
always one symmetry which is spontancously broken for any infinite
many-body system—The Galilei invariance [17,19].

In fact, the expectation value of the matter current changes by going
to a reference frame moving with velocity v with respect te original one by

(F)={F)+¥p)

which clearly shows the spontaneous breakdown of the Galilei symmetry.

From this one concludes using Goldstone’s theorem that any such
system with short range forces has (phonon-like) excitations of arbitra-
rily small energy.

A more precise result can be obtained by using the method of sum
rules [17].

There is no energy gap for any translationally invariant many-body
system with a potential such that ri' 72 V(r)—0.

n—0co

FProof Using the continuity equation
cp .
._é_f_+ dl\"f=0 (V'S)

one arrives by a straightforward application of equal-time commutation
relations at the following sum-rule [20]

o0

F(p) = [wdp,(w) = (Q1p(0)]| 2)p’ (V.4)

0

where F(p) is the Fourier transform of

Fx)y= <9 .[ﬁj— (x, 0, P(O)}
i G

|25 the ground state, and du(w) a positive measure in w.
Taking now the momentum conservation law

a)

|
/

w1 =

2s,
g

YLt

Fy T [V —yipl ek (V.6)

xA

o
ey
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with Sy, the stress tensor we find again using equal time commutation

relations,
Q> ;

[ ¢ ‘ ‘E / &8y
<Q|:—‘¢{£(X= O)s f{(0):|’Q>I\Q li-\ k (X, 0)’ fK(O}J
CX

‘63

5*(x) : .
+ —— V. J{QipOp(y, 0)| Q) RV (x~y)d"y
1
-7 (R p(0)p(x, O XV, FV(x) (V.7)
and using {V.3) once more on the r.h.s. of (V.7) we find
fwidu,(w) = 0(p?) if lim r* **¥(ry = 0 (v.8)
Y n—-o0

Comparing (V.4) and (V.8) one concludes

{1) thereisno energy gap

(ii) the weight of du, gets entirely concentrated at the origin w = 0 for
p—0

Jdu, )

lim <

" fdi)
0

The question whether those Goldstone excitations are of a quasi-
particle nature or not cannot however (contrary to the relativistic case)
be settled on a general basis and depends on more detailed dynamical
information. They are particie like for a free bosen system but not for a
free fermion gas.

It should be remarked that despite the impossibility of a general theo-
rem on unitary implementation of symmetries like we had in the relati-
vistic case, Goldstone’s theorem can still be usefulin many-body systems
to obtain additional infermation on the excitation spectrumcoming from
other broken-symmetries [21].

In parucie physics the idea of explaining some of the approximate
symmetries observed in nature such as isospin, SU(3), etc. [22], although
extremely appealing from the aesthetical point of view has always been
plagued by the appearance of unwanted zero-mass particles.

=0 (V.9)
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Although one can always hope for, that through some dynamical
miracle those zero mass particle do not couple to matter and remain
unobservable it seems to me that at Jeast in the case of isospin breaking.
since the associated Goldstone bosons are charged particles, they should
have an observable effect through macroscopic deviations in the Cou-
lomb law coming from vacuum polarization. A very rough estimate of
the lowest order contribution gives a potential which behaves at large
distances a5 ~log rir.

A very interesting approach for obtaining spontaneous breakdown
without zero mass particles [23] is based upon the introduction of gauge
(Yang-Mills) fields which lead to a relativistic theory without local
commutation relations so that by a mechanism similar to that played by
the Coulomb potential in many-body systems [24] the Goldstone bosons
bacome massive.

Those attempts bring us of course to the very basic question of how
much physics is there in the postulate of local-commutativity for non
ohservable fizlds and under which conditions can this be proved start-
ing from local commutativity for the observables [25].
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